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We consider the resonant excitation of surface waves inside a rectangular wave tank 
of arbitrary water depth with a flap-type wavemaker on one side. Depending on the 
length and width of the tank relative to the sinusoidal forcing frequency of the wave 
paddle, three classes of resonant mechanisms can be identified. The first two are the 
well-known synchronous, resonantly forced longitudinal standing waves, and the 
subharmonic, parametrically excited transverse (cross) waves. These have been 
studied by a number of investigators, notably in deep water. We rederive the 
governing equations and show good comparisons with the experimental data of Lin 
& Howard (1960). The third class is new and involves the simultaneous resonance of 
the synchronous longitudinal and subharmonic cross-waves and their internal 
interactions. In this case, temporal chaotic motions are found for a broad range of 
parameter values and initial conditions. These are studied by local bifurcation and 
stability analyses, direct numerical simulations, estimations of the Lyapunov 
exponents and power spectra, and examination of Poincar6 surfaces. To obtain a 
global criterion for widespread chaos, the method of resonance overlap (Chirikov 
1979) is adopted and found to be remarkably effective. 

1. Introduction 
The resonantly excited, longitudinal forced waves and transverse cross-waves 

(wave motions respectively perpendicular and parallel to the wavemaker) in a short 
wave tank with deep water were investigated both analytically and experimentally 
by Lin & Howard (1960). Using a method similar to Penney & Price (1952), they 
looked for periodic nonlinear solutions for the longitudinal and transverse standing 
waves. For the longitudinal forced standing waves, they obtained a relationship for 
the response amplitude versus excitation frequency up to third order in surface 
displacement, a result which was largely confirmed by their experimental 
measurements. For the standing cross-waves, however, they were able to  carry out 
the analysis only to second order. The nonlinear dependence of the wave amplitude 
on frequency did not appear, and they were unable to make quantitative comparisons 
with the experiments. 

Since then, there have been two main studies of standing cross-waves in a short 
wave tank. Garrett (1970) was apparently the first to show that the mechanism for 
the excitation of transverse cross-waves is indeed a parametric resonance. Using an 
averaging over the longitudinal waves, Garrett obtained a Mathieu equation 
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governing the amplitude of cross-waves. This analysis explains the occurrence of 
subharmonic resonant cross-waves a t  specific excitation frequencies but cannot 
predict their amplitudes, since the solution of the Mathieu equation is unbounded in 
the unstable region. Recently, Miles (1988) used a Lagrangian formulation and 
obtained a Hamiltonian system governing the slow modulation of the cross-wave 
amplitude. Miles’ analysis included the nonlinear interaction between the motion of 
the wavemaker and the cross-wave to second order and the self-interaction of cross- 
waves to third order. The equation is equivalent to that governing the parametrically 
excited surface waves in a vertically oscillating tank (Miles 1984~) .  

Both Garrett’s and Miles’ studies are for the case where the longitudinal wave is 
not resonantly excited by the wavemaker. For such conditions, the amplitude of the 
longitudinal wave is of higher order than that of the resonant cross-wave. If the 
length of the tank is such that the longitudinal waves are also resonated 
(synchronously), the amplitudes of both the longitudinal and cross-waves may be of 
the same order of magnitude (see, for example, the experimental measurements in 
figure 7.2 of Lin & Howard 1960). In  this case, the internal interactions between the 
two standing waves also become important, resulting in a complicated and varied 
dynamical system. 

In this paper, we re-examine the resonantly excited longitudinal and transverse 
waves in a three-dimensional rectangular tank with a harmonically driven 
wavemaker on one side. Depending on the length and width of the tank relative to 
the forcing frequency and water depth, i.e., on the degree of longitudinal 
(synchronous) and transverse (subharmonic) turning, the different possible orders of 
magnitudes of the longitudinal and transverse wave amplitudes relative to that of 
the paddle are systematically considered. Specifically, the following three sets of 
ordering are identified : 

Longitudinal Transverse 
Wavemaker wave wave 

Case I O ( 4  O ( l )  O(4) 
Case I1 O ( 4  ocq o(q  
Case I11 O k )  O(SZ) O(f3)  

where E = a /L  4 0(1 )  is the non-dimensional amplitude of the wavemaker motion 
normalized by the length, L ,  of the tank. We remark that other order-of-magnitude 
orderings are in principle possible, for example the somewhat ‘obvious ’ choice of 
O(&) for both the longitudinal and cross-waves for Case 111. With that ordering, 
however, the requisite coupling occurs only a t  fifth order and the interactions 
between forced and parametric resonances are a t  higher order than the present case. 

Case I corresponds to  the case where the driving frequency of the wavemaker 
approximates a natural frequency of the longitudinal standing waves but is not close 
to twice that of a standing cross-wave. The longitudinal standing wave is 
synchronously forced and resonated while the cross-wave is not resonant and is of 
higher order in amplitude. Case I1 is the opposite situation where the subharmonic 
cross-waves only are parametrically resonated. The longitudinal waves are not close 
to resonance, are of higher order, and do not affect the transverse wave motion in this 
case, as shown by Garrett (1970). The relevant evolution equations governing the 
amplitudes of the resonant waves for these two cases can be derived using the method 
of multiple scales. The derivation and results for both cases ($53 and 4) are similar 
to a number of existing results for related problems. For the cross-wave Case 11, our 
equation is isomorphic to that of Miles (1988) using the method of averagcd 
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Lagrangian. Interestingly, our results for the more straightforward Case I appear to 
have been obtained in the present context using multiple scales for the first time. In  
order to make comparisons to experiments, we consider general finite water depth 
and no approximation is used for the shape function of the wavemaker motion, in 
contrast to the existing analyses of Lin & Howard (1960) and Miles (1988). In both 
Cases I and 11, the response amplitudes of the stationary wave motions, obtained 
readily from the evolution equations, compare well with the measurements of Lin & 
Howard. We also discuss the particular depths at which the third-order asymptotic 
analyses break down. To obtain uniformly valid descriptions at these particular 
depths we carry out the perturbation analyses to fifth order and derive the 
appropriate evolution equations in both cases. 

Case 111 is new and represents the situation when the driving frequency 
approximates both a natural frequency of the directly forced longitudinal standing 
wave and twice that of the standing cross-wave. The forced resonant longitudinal 
and parametrically resonant cross-waves are of the same order of magnitude and the 
internal interactions between the two orthogonal waves become significant. For a 
broad range of physical parameters (water depth, wavemaker amplitude, width-to- 
length ratio and frequency detuning), these interactions are shown to lead to chaotic 
wave motions. We derive the evolution equations governing the amplitudes of the 
longitudinal and transverse waves for such three-dimensional interactions in $5.1. In 
order to account for the two resonances caused by the wavemaker, which are 
involved at different orders, two long timescales are employed in the perturbation 
analysis. The equilibrium states (stationary solutions) of the evolution equations and 
their local stability are discussed in $5.2. Numerical simulations of the evolutions are 
performed in $5.3, and sample results showing temporal chaotic motions in a number 
of resonance conditions are presented. The chaotic nature of the evolutions are 
further confirmed through estimates of the Lyapunov characteristic exponents and 
power spectra of the amplitudes. In  view of the number of physical parameters 
involved, and to obtain a global criterion for the likelihood of widespread chaotic 
behaviour, we adopt the resonance overlap approximation of Chirikov (1979) to the 
present problem in $6. This approach is shown to yield remarkably good predictions 
of the global evolution behaviour of the present system. 

In  recent years, the generic two-degree-of-freedom internally resonant system of 
weakly nonlinear gravity waves in a (rectangular or circular) cylinder subject to 
either horizontal (directly forced) or vertical (parametrically resonant) excitation has 
been widely studied, primarily for the weakly dissipative system. These include, for 
example, Keolian et al. (1981), Gollub & Meyer (1983), Ciliberto & Gollub (1984, 
1985a, b ) ,  Meron & Procaccia (1986a, 6 ,  1987), Nayfeh (1987), Umeki & Kambe 
(1989) for the vertically oscillated circular cylinder; Gu & Sethna (1987), Feng & 
Sethna (1989), Simonelli & Gollub (1989) for the vertically oscillated square cylinder ; 
and Miles (19!34b), Funakoshi & Inoue (1987, 1988) for the horizontally oscillated 
circular cylinder. As pointed out earlier, the present Cases I and I1 differ mainly in 
detail and in providing direct comparisons to the measurements of Lin & Howard 
(1960). The dynamic system of Case 111, however, is new and differs from the 
above problems in the incorporation of both direct and parametric excitation 
simultaneously. 

We have not considered dissipation in this work, although it is known that such 
effects play a role in the physical problem (Shemer & Kit 1988). A small, 
phenomenological linear damping term can be readily included in the evolution 
equations (e.g. Miles 1984 b )  and much of the present analyses carried out accordingly. 
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Preliminary results indicate that for weakly dissipative systems Hamiltonian chaos 
is preserved. Although the method of resonance overlap is strictly applicable only to 
conservative perturbations, it may be a useful analysis tool for some weakly 
dissipative problems by providing a global solution to the corresponding Hamiltonian 
system with the dissipation terms neglected. These and related investigations are 
currently under way. 

2. Formulation of the problem 
We consider the fluid motion in a short rectangular wave tank with a wavemaker 

a t  rest a t  x = 0, a rigid bottom a t  z = - H ,  rigid walls a t  x = L and y = 0, W ,  and a 
free surface with undisturbed position a t  z = 0. The wavemaker is subject to a 
harmonic motion given by 

x = x(z, t )  = aF(z) cos 0, t ,  (2 .1)  

where a and w, are respectively the amplitude and frequency of the wavemaker 
motion, and F ( z )  its shape function normalized by F(0)  = 1 .  For a flap-type 
wavemaker hinged a t  z = -d  >, - H ,  F ( z )  = 1 + z / d  for 0 >, z >, - d ,  and F(x)  = 0 for 
- d 3 z 2 - H ;  and for a piston wavemaker, F(z )  = 1. 

In  what follows, all physical variables are non-dimensionalized by the length of the 
tank L ,  and the timescale 2/w,. The fluid is assumed to be ideal and surface tension 
is ignored. For irrotational motion, the velocity potential @(x, y,  z ,  t )  and free-surface 
elevation [(x, y, t )  arc then governed by the boundary-value problem : 

(2 .2a)  V2@ = 0 (x < x < l , o  < y < 1/z, -h < 2 < [), 

a@ 
-+$V@.V@+4iVp(; = 0 ( z  = [), 
at 

a@ ax axa@ 
- =-+-- (x=X=€F(z)COS2t), 
ax at az az 

(2 .2b)  

( 2 . 2 4  

(2.2d)  

- 0 ( z  = - h ) ,  (2.2e-g) 
a@ a@ 

ax aY az = o  ( y = O , l / Z ) ;  -- - 0  (x = 1 ) ;  - 
a@ _ -  

(2.2h) 

wherc I = L /  W is the length-to-width ratio of the tank, and B = a /L  4 O( 1) measures 
the amplitude of the wave paddle motion. For convenience, N and p are defined 
respectively as N = QL,/w, x 1 and p = (nx tanh n&-’ = pz for the problem of 
longitudinal standing waves only (Case I) ; and N = 52,/0, x t and p = (In tanh Zxh)-l 
=pv  for the (first-mode) cross-wave problem (Case 11). and 52, are the linear 
natural frequencies of the longitudinal (x) and transverse (y) standing waves, 
respectively; and n is the mode number of the longitudinal standing wave. 

We introduce perturbation expansions for @ and g :  

(2 .3a,  b) 
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where the constant v > 0 provides the ordering .depending on the problem to be 
solved. For the Laplace equation and all of the linear boundary conditions in (2.2), 
@, and satisfy the same form of the equations as @ and 5. Expanding the free- 
surface boundary conditions (2.2 b, c )  in Taylor series about z = 0 and substituting 
the perturbation expansions (2.3) for @ and 5, we obtain to the first three orders the 
following results for the free-surface boundary conditions. For the kinematic 
boundary condition (2.2b) : 

where 

(2.4a) 

(2.4b, c )  

and for the dynamic boundary condition ( 2 . 2 ~ )  : 

( z = O ) ,  j = l , 2  ,..., (2.5a) 

where (2.5b, c )  

The wavemaker boundary .conditions for Gj are similarly obtained by expanding 
(2 .2d)  about x = 0 and substituting ( 2 . 3 ~ )  for @. The appearance of forcing due to 
the wavemaker depends on the specific ordering of the problem. For the resonant 
longitudinal standing wave only case (Case I), the boundary conditions at x = 0 at 
the first two orders are homogeneous : 

a@ 
3 = 0  ax ( x = O ) ,  j = 1 , 2 ,  (2.6a) 

and an inhomogeneous forcing term appears only at  third order, O(s), for G3: 

(2.6b) 

For the resonant cross-wave only case (Case 11) and for the three-dimensional motion 
case (Case III), the wavemaker boundary conditions for and Q2 are respectively 
( 2 . 6 ~ )  and (2.6b). The boundary condition for G3 for these two cases is given by: 

( 2 . 6 ~ )  

3. Synchronous resonantly forced longitudinal standing waves 
If the excitation frequency of the wavemaker is approximately equal to a natural 

frequency of a longitudinal standing wave in the tank (say, the nth spatial harmonic 
mode), but the length-to-width ratio l is not close to an integral multiple o f t  (for 
moderately deep water), then only the longitudinal wave is resonantly excited by the 

FLM 216 
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motion of the wavemaker. The transverse waves are of higher order in amplitude 
(O($))  compared to the longitudinal standing waves (O(sf))  and do not interact with 
the longitudinal wave motion. In this case, the appropriate choice for the long 
timescale is 7 = &. We further define the excitation frequency as N = sZ,/w, = 
1 + dA,, where A, is the detuning parameter between the wavemaker frequency and 
the linear resonance frequency of the longitudinal standing wave. 

Processing the boundary-value problem a t  successive orders, a t  the leading (O(d)) 
and second (O($))  orders, the boundary conditions at the wavemaker are 
homogeneous and the velocity potential !D1 and !D2 and the free-surface elevation 5, 
and c2 can be solved readily. The aim is to obtain the equation governing the 
evolution of the complex amplitude envelope A(7)  of the first-order motion: 

Gosh nx( z + h)  !D1 = [A(T) e-i2t + c.c.] cos nxx 
nx sinh nxh ' 

where C.C. stands for the complex conjugate of the preceding term. At the third order, 
O(E) ,  an inhomogeneous wavemaker boundary condition appears : 

To remove this inhomogeneous condition from the wall boundary, we decompose the 
total potential dj3 into two parts (Havelock 1929; Ursell, Dean & Yu 1959): 

!D3 = q5,-i(e-'"-cC.c.)rp(z,z), (3.3) 

where rp(x, z )  satisfies the Laplace equation and homogeneous boundary conditions 
on the stationary walls and the bottom, and @/ax = P(z)  on the wavemaker z = 0. 
For a flat-type wavemaker hinged a t  z = - h, such as those in the experiments of Lin 
& Howard, rp is given by 

cos nnx rpb, 2) = __ x3 m-,, c (2m+1)3 '1 +-zl 1;: * z n  * [ (2m+ 1)[(2m+ 1)2+4n2h2] 

2 
( 2 m + l ) x  

2h 
sin 

( 2 m + l ) x  
8h2 [sin 2h 

cos nxx. 1 (2m+ 1)x: 
4h2 * ['OS (2m+1)x(z+h)]  h 

8h2 a, [ cos h 
+F m-n C (2m+1)4 '7 zl z,, (2m+ 1)2[(2m+ 1)2+n2h2] 

Substituting (3.3) into the third-order free-surface boundary conditions (2.4) and 
(2.5)) and suppressing the secularity for q53 and C3, we obtain finally the evolution 
equation for A(7) : 

(3.4) px-+ i2Ax px A +@- ir, A2A* = 0, 
dA 
dr  

where 

(2  + 3n2x2& + 12n4x4& - 9n6x6,uE). tanh-, ra=- 6=-- (3.5a, 6 )  
nxh 1 8 

n3n3h 2 359% 

The frequency of the longitudinal standing wave is exactly equal to the frequency 
of the wavemaker motion and its amplitude is a function of that forcing frequency. 
This is the so-called non-isochronicity property for nonlinear oscillators. The 
amplitude and stability of the stationary responses of (3.4) are readily obtained. The 
amplitudes of stationary solutions as a function of detuning A, are thus similar to 



Resonantly excited motions in a rectangular wave tank 349 

those of an undamped Duffing equation with a change from a 'softening-spring' 
(fa > 0) to a 'hardening-spring' (ra < 0) system as the depth h decreases through h* 
(Tadjbakhsh & Keller 1960; Fultz 1962). 

At h = h*, fa = 0, and the perturbation analysis above breaks down. For h near h*, 
then, we expand @ and 6 as perturbation series in powers of 8, choose N = 1 +dA,, 
and process the perturbation analysis to fifth order. Instead of the cubic nonlinear 
equation (3.4) for A ,  we obtain a t  the fifth order, an evolution equation with quintic 

nonlinearity : dA 
px-+i2A,pxA+~8-i~A3A*2 = 0, 

dr 
(3.6a) 

where 
- n27c2 

128FX 
r, - [1151 7509 2 2 2 52919 4 4 4 14683 6 6 6 

6 8 ' p z + T n  ' p X + T n  ' l u x  

- W ' X ~ ~ ;  +45n10~10pi0 +*127t12p~2]. (3.6b) 

This quintic nonlinear equation is valid for Ih-h*l < O($) for A, < O(1).  
When the natural frequency of an mth spatial harmonic wave becomes an integral 

multiple of that of the fundamental nth harmonic (m + n) a t  certain values of A ,  the 
first-order solution above becomes non-unique (Tadj bakhsh & Keller 1960). 
Physically, at these depths both the nth and mth spatial harmonics are excited at 
first order, and there is an internal resonance between the two waves. The coupling 
interaction of such internal resonance is cubic nonlinear, and the equations governing 
the evolution of these internal resonant waves can be derived in a similar 
manner. 

Finally, we show comparisons between the present analytic results and Lin & 
Howard's (1960) experimental measurements. Figure 1 plots the frequency 
amplitude relation for the stationary resonantly forced longitudinal standing waves. 
The circles represent the experimental measurements, and the solid and broken lines 
are stable and unstable stationary solutions respectively of (3.4). The amplitudes of 
the excitation are given by the maximum deflection, 8, of the wavemaker according 
to  Lin & Howard. Figure 1 (a) is for tank dimension L = 18 in., H = 24 in. and 28 = 
0.566", and the resonant motion is the first-mode (n = 1) standing wave. The 
comparisons between the theoretical and experimental results are remarkably good 
for the entire range of detuning frequency. Figure 1 (b)  is for the case L = 29.5 in., 
H = 24 in., 28 = 0.935", and the resonant standing wave is the second mode (n = 2). 
The comparisons are fairly good except for large detuning values where the total 
response is small and other modes may have begun to participate. For the present 
case, Lin & Howard (1960) also obtained theoretical results using a direct 
perturbation expansion similar to that of Penney & Price (1952). The resulting 
analysis was fairly involved and they were only able to obtain results for the first- 
mode (n = 1 )  resonance and for deep water. Because of this, and possibly also due to 
algebraic errors, their comparison to the n = 1 case (figure la)  was not as 
satisfactory. 

4. Subharmonic parametrically resonant transverse standing waves 
When the wavemaker excitation is close to twice the frequency of a cross-tank 

standing wave but the length of the tank is such that the longitudinal standing wave 
is not resonant, the former is resonantly excited and the latter is of higher order in 
amplitude. Following the experiments and analysis of Lin & Howard (1960) for the 
problem, Garrett (1970) showed that the mechanism for cross-wave excitation is 

12-2 
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FIGURE 1. Comparisons of the frequency-response relationship for stationary longitudinal waves 
between the present analytic results (solid lines for stable and broken lines for unstable responses) 
and Lin & Howard's (1960) experimental measurements (circles) for (a )  n = 1 ,  L = 18 in., h = 
24 in., 28 = 0.566"; and ( b )  n = 2, L = 29.5 in., H = 24 in., 28 = 0.935". 

indeed one of parametric resonance characterized by forcing terms which appear as 
coefficients of the differential equation. 

For this problem, we consider the t subharmonic parametric-resonant cross-waves, 
choose the long timescale r = et and define the transverse detuning A, as N = 

sZ,/w, = ;+&A,. The length-to-width ratio 1 is assumed to  be far from integral 
multiples of so that the longitudinal wave is not resonantly excited. Since the 
longitudinal wave is of higher order, a t  leading order, O(&), the velocity potential 
is independent of x : 

cosh Zn(z + h) 
= ~ [ B ( T )  e-it + c.c.] cos Zny 

ln sinh Znh ' 
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where B(7) is the complex amplitude envelope of the cross-wave. At the next order, 
@2 satisfies the inhomogeneous wavemaker boundary condition (3.2) a t  x = 0. The 
same procedure as (3.3) is applied and the second order cD2 and c2 can be solved 
accordingly. Note that there is a mean set-up of ih(e-i2t + c.c.) in the second-order 
free-surface elevation which is equal to the fluid volume displaced by the wavemaker, 
$',, f ( z ,  t)  dz. This mean free-surface elevation is the only contribution from the 
wavemaker a t  this order ( O ( E ) )  which causes a secularity a t  the next order (O(d)) 
through its interaction with the transverse wave. 

At third order, O($) ,  the inhomogeneous wavemaker boundary condition is 

(4.2) 

From (4.2), we see that the resonant excitation of the cross-wave is caused directly 
by the interaction between the wavemaker motion and the transverse wave without 
involving the longitudinal waves. Again, we transform the inhomogeneous boundary 
condition by the substitution 

cD3 = $3 + (B* e-it + B e-i3t + c.c.) O(x,  z )  cos Zny, ( 4 . 3 ~ )  

where 

coshhh-1 $ [sinmlnz( 1 I 
1n4h2 sinh lnh m=O 2m + I Z2 +mi n-l l 2  +mi + n2 

e ( x , z )  = 

mcoshZnh-l]cosm2n(z+h) 

(4.3b) 

and m1 = (2m + 1)/2h, m2 = m/h. Combining the kinematic and dynamic free-surface 
boundary conditions for $3 and applying the solvability condition yields the 
evolution equation for B(T) : 

h 3 h 2  sinh 17ch m-O l2 + mt 
- 

where 

dB 
dr 

,u -+i2h,p,B-i/3B*-iiT,B2B* = 0, (4.4) 

( 4 . 5 ~ )  

(4.5b) 

1 
l n h  

tanhilnh, gh = zzi tanh Znh tanh ilnh. (4.5d) +- g =-- 
212n2h 13n3h2 

1 I 

The coefficient /3 of B* in (4.4) represents the parametric resonance and is negative 
for all depths. Note that the f-terms in p come from the first-order wavemaker 
boundary condition, and are equivalent to  those of Garrett's linear results obtained 
by averaging the longitudinal motions. The g-terms in p correspond to  the second- 
order wavemaker boundary condition representing the direct interaction between 
the motions of the wavemaker and the cross-wave. The primes on f and g denote 
respectively derivatives with respect to  z of ~ ( x ,  z )  and O(x, z )  ; and the zero subscripts 
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0 

FIGURE 2. Comparisons of the frequency-response relationship for stationary cross-waves between 
the present results (solid lines for stable and broken lines for unstable responses) and Lin & 
Howard's (1960) experimental measurements (circles) for H = 24 in., W = 24.1875 in. and (a) L = 
7 in., 20 = 0.287'; and (b) L = 8.75 in., 20 = 0.279'. 

mean that only the constant terms in the series contribute to resonance. For 
example, gi is the contribution coming from the constant terms of w / a z  a t  z = 0. 

Equation (4.4) is isomorphic to equation (4.1) of Miles (1984a) and equation (5.1) 
of Miles (1988) after a +IT phase shift of his complex amplitude. The details of the 

Wef 2 9 ,  
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phase-plane trajectories and stability analysis of the stationary solutions of (4.4) can 
be found in Miles ( 1 9 8 4 ~ ) .  For the stable response, the free surface is flat when the 
wavemaker reaches its outermost position ; while for the unstable response the free 
surface is flat when the wavemaker is in its innermost position. This phase relation 
was also observed in Lin & Howard's experiments. Note that since /3 is negative in 
the whole range of water depth, the phase-plane trajectories of (4.4) correspond to a 
gx rotation of those in figure 2 of Miles ( 1 9 8 4 ~ ) .  For periodic solutions, the evolution 
equation (4.4) can be integrated in closed form in terms of elliptic integrals (e.g. 
Struble 1963 ; Tsai & Yue 1988). 

Again, we note that there exists a depth h = h** where T,(h**) = 0, and the 
perturbation analysis above breaks down. To obtain a uniformly valid description 
near that depth, we expand Q, and 6 in powers of &, and carry out the perturbation 
to O(ei). The final evolution equation is 

( 4 . 6 ~ )  
dB 
dz 

p -i- i2h,p,B-i/3B*-i~B3B*2 = 0, 

where 

Finally, we compare the present results to the measurements of Lin & Howard 
(1960). Figure 2 shows these comparisons for the frequency-amplitude relation of the 
stationary resonant cross-waves. The dimensional parameters are L = 7 in., 28 = 
0.287" (figure 2a)  and L = 8.75 in., 28 = 0.279' (figure 2b) respectively, with H = 
24 in., W = 24.1875 in. in both cases. The present results are in reasonably good 
agreement with the experimental data but with a slight overprediction of the 
response amplitudes which may be due to the absence of dissipation in the present 
theoretical model. 

5. Interaction between resonant longitudinal and transverse standing waves 
5.1. Evolution equations 

When the excitation frequency of the wavemaker is approximately equal to the 
natural frequency of the longitudinal nth harmonic standing wave and the length-to- 
width ratio l is close to @ (for first-mode cross-waves), the longitudinal wave is 
directly resonated by the wavemaker while the transverse wave is parametrically 
excited. Both waves are now of the same order of magnitude, O(&, and internal 
interactions must be included. To account for the two resonances which are involved 
at different orders, two long timescales are introduced: r1 = It and r2 = et. The 
relative degrees of resonance between the wavemaker motion and the longitudinal 
and transverse standing waves are measured by sZ,/w, = )+ $A and B,/sZ, = 2 + &y, 
where A and y are the detuning parameters. 

The first-order velocity potential for this case of three-dimensional wave motion is 

cosh nn(z i- h) 
nn sinh hxh 

Q,, = [ A ( 7 1 , r , ) e - ' ( 2 + ~ E ) t + ~ . ~ . ]  cosnnx 

cosh Zx ( z  + h) 
lx sinh h h  

+i[B(r1,72)e-it+c.c.] cosnxcy . (5.1) 
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At the second order, O(s) ,  the inhomogeneous wavemaker boundary condition (3 .2)  
results in a secular forcing which gives the following solvability condition for Q2: 

( 5 . 2 ~ )  
CIA . 

p - + 12hy(2 +YE+) A + (1 + yd)  6 eiyrl = 0, 
a71 

(5.2b) 
i3B 

and p - + i2ApB = 0, 
871 

where p E y, x 4p, and 6 is given in ( 3 . 5 ~ ) .  The higher-order terms in the coefficients 
of ( 5 . 2 ~ )  come from expressing y, and pLy in terms of the common p and are retained 
to be consistent a t  the next order. Note that because of the detuning between the 
natural frequencies of t'he longitudinal and cross-waves, p,/p, = (Q,/Q,)2 
4+0(~;) ,  the corresponding error in the evolution equation a t  third order will be O(@)  
if we replace yz by $Ly in the sequel. Applying ( 5 . 2 ~ )  and (5 .2b)  to the second-order 
boundary-value problem, we can solve for Q2 and g, (see the Appendix). 

At third order, O($),  the inhomogeneous wavemaker boundary condition ( 2 . 6 ~ )  
appears. Since the first term of the forcing in ( 2 . 6 ~ )  does not cause resonant 
secularity, only the form of the boundary condition (4.2) needs to be considered and 
the same substitution as ( 4 . 3 ~ )  is used for Q3. Combining the free-surface boundary 
conditions, sorting out the secular forcing terms and invoking the solvability 
condition for #3, we obtain the evolution equations with modulation timescale 72 : 

(5 .3a)  
aA 

372 
,u - + i4h2pA + A8 eiyrl - ir, A2A* - iZa ABB* = 0, 

i?B 
and , p-+i2A2pB-i,8B*-i4,B2B*-iCbBAA* = 0, (5 .36)  

a72 

where 6 is given by (3 .5a) ,  ,8 by (4.5a),  & is four times the expression (3 .5b) ,  and & 
is the same as (4 .56) .  The coefficients Za and C, governing the nonlinear coupling 
between the longitudinal and transverse waves are given by 

C, = a,[l -&n 1 1  2 + 1') x2p,i] + b,[ - 1 +#d -1') n'pj]  +g2 -+g2 -$r2Z2p, ( 5 . 4 ~ )  

Cb = iza. (5.4b) 

Equations (5.2) and (5 .3)  respectively govern the evolution of the first-order 
amplitudes with respect to and T ~ ,  and A and B in general vary over both 71 and 
T~ (see figure 7 for some sample evolutions). Since 71 appears explicitly in (5.3a), it 
is more convenient to consider A and B as functions of 71 (only), and combine 
(5.2a, b)  and (5 .3a,  6 )  into a single pair of equations. Defining 71 3 T for convenience, 
recalling the chain rule (a/a7,) +4(a/a7,) --f (a/&), and factoring out the modulation 
of the forcing in ( 5 . 2 ~ )  and ( 5 . 3 ~ )  by letting A = 2/U-eiym, we obtain the final result 

dA - - -  
,u -+ iyaA"+ s"- i< A2A* - if:,ABB* = 0 

d7 
( 5 . 5 ~ )  

and (5 .5b)  
dB 
dT 

p-+iyb B- ipB* - ic B2B*- i f b  BAA* = 0, 
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FIGURE 3. Parameters TJ,u and Za/p plotted against water depth h for n = 1 and 1 = 0.248062. 

- 6  s = -[i +€:(y+h)], p= €$3, i;, = 2&c, = E'G, (5.6~-f) 
d2 - 

.fa = €'Za = 2 € k b  = c, = 5. (5.W 

The evolution equation (5.5~) reduces to (3.4) for the longitudinal wave amplitude 
in the absence of the transverse wave, and the transverse wave equation (5.5b) 
reduces to (4.4) if the longitudinal motions are small. 

If we write A" E C,+iD, and B = c b + i D b ,  (5.5a, b) can be represented as an 
autonomous Hamiltonian system with the Hamiltonian 2 given by 

1 -  
P 

x = -- [sDa+;B(c; -D;) -5,(Ci +D:) + g ( c ; + D y  

- &b( c; +BE) + i<(cg + og)z + ii( c% +Di) (CE +D;)] .  (5.7) 

The conjugate variables c,, D, and c b ,  Db satisfy the Hamiltonian equations 

(5.8a, b )  

The Hamiltonian system (5.8) is invariant under the reflection (Cb,Db) +- (Cb,Db) 
by virtue of symmetry with respect to the centreplane of the wave tank y = tW. 

The coefficients ra,b and Za,b of the cubic nonlinear terms in the evolution 
equations, which govern the self- and internal interactions respectively, are functions 
of the length-to-width ratio I ,  longitudinal wavenumber n, and water depth h. Figure 
3 shows ra /p  and Za/p  as the functions of h for n = 1 and 1 = 6.0124.1875 x 
0.248062 (a value corresponding to that of RUN 101 in Lin & Howard's experiment). 
For shallow depths, the magnitudes of r, and Za become much larger than O( 1) and 
the present perturbation analysis becomes invalid. For deep water, r, is 0(1) while 
Za approaches a small value, and the interaction between the longitudinal and cross- 
waves becomes weak. The internal interaction is strongest around intermediate 
depths, where the magnitudes of r, and C, are comparable. For higher n with the 
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corresponding I ,  the coefficients of the nonlinear terms have behaviour similar to that 
for the n = 1 mode. 

5.2. Stationary solutions and bifurcation diagrams 

The stationary solutions of the evolution equations (5,8a, b)  are given by 

c,, = 0, c b o  = 0, Dbo = 0, 

?h: D:, -Y, D,, + s“ = 0, 

c,, = 0, Db, = 0, 

( 5 . 9 ~ )  

(5.9b) 

(5 .94  

where Zab = 2, f b -  e. The solutions (5.9a) correspond to the two-dimensional 
longitudinal waves of 93, while (5.9b, c) are the stationary three-dimensional wave 
solutions arising from the coupling between the forced longitudinal wave and the 
parametrically excited transverse wave. 

The stability of these stationary solutions is determined by the real parts of all the 
eigenvalues w of the equation 

F(w) = IIM(X = X,) -pdJJ = 0, (5.10) 

where X = (C,, D,, cb,Db), M = aS/aX, S = V , X ,  and I is the unit matrix. One 
property of (5.10) is that if w is an eigenvalue, so is - w .  Therefore a stationary 
solution is stable if, and only if, the eigenvalue w is pure imaginary. 

For the two-dimensional solution (5.9a),  the eigenvalue equation (5.10) can be 
simplified as 

F(w)  = &*W2+ ( 3 ~ D ~ 0 - 4 y , ~ D ~ , f ~ ~ ) ] ~ e w 2 + ( ~ b U 4 , 0 - 2 y b ~ ~ D ~ o + y ~ - $ ) ]  = 0. 
(5.11) 

The stationary solution is stable if, and only if, ( 3 c  Dt0 - 4ya D:, + y:) > 0 and 
(,fb Di0 -2y, xb D:, + y i  -,@) > 0. The first condition determines the stability of the 
stationary longitudinal wave subject to perturbations in the longitudinal direction. 
This type of bifurcation corresponds to the turning point. The second inequality 
refers to the stability of the stationary longitudinal wave subject to transverse 
perturbations. This is the so-called pitchfork bifurcation which determines the 
incidence of three-dimensional wave motions. The bifurcation of the two-dimensional 
transverse wave in $4 is a special case of this kind of bifurcation which bifurcates 
from the state D,, = 0. 



Resonantly excited motions in a rectangular wave tank 357 

For the three-dimensional stationary waves (5.9b) and (5.9c), (5.10) becomes 

F ( w )  = ,u4w4+F2p2w2+F0 = 0, (5.12) 

(5.13a) 

The upper and lower expressions in (5.13a) and (5.13b) correspond to the stationary 
solutions (5.9b) and (5.9c), respectively. The necessary and sufficient conditions for 
(5.12) to have pure imaginary solutions w ,  i.e. for the critical points to  be stable, are 
F, > O,Fo > 0 and Fi-4Fo > 0. 

The system (5.8) has a total of five parameters: h, 1, A,  E and n. For a given tank 
dimension and wavemaker amplitude, h, 1, E and n are constant. We thus perform the 
bifurcation analysis of eodimension-one in terms of the detuning h of the excitation 
frequency. Figure 4 shows the bifurcation diagram of the amplitude of the stationary 
solution, [(C",+D2,,) +0.5(C;,+DE0)$, as a function of the detuning parameter A, for 
1 = 0.248062, n = 1, E = 0.009072 and different water depths, h = 1.5, 1.6, 1.7,  1.9, 
2.2, 4.0. The solid and broken lines in the figures represent respectively the stable 
centres and unstable saddle points of the stationary solutions. The branches labelled 
(a), ( b ) ,  and (c) correspond to the families (5.9a), (5.9b) and ( 5 . 9 ~ )  respectively. 

The features of the bifurcation diagrams change abruptly around the intermediate 
depths, h = 1.5-1.9. For h greater than 2.5, the bifurcation diagrams are qualitatively 
similar to that of the h = 4.0 case. For h = 1.5 and 1.6, a three-dimensional wave 
family, branch (b , ) ,  bifurcates from the family of two-dimensional longitudinal 
waves (a,). Along this three-dimensional family, both longitudinal and transverse 
components grow with increasing detuning A ,  but the transverse wave increases a t  
a faster rate. Stability of this three-dimensional wave is lost when the transverse 
wave grows to about one order of magnitude greater than the longitudinal wave, and 
the wave motion becomes essentially that of a two-dimensional cross-wave. 

Figure 5 shows the real and imaginary parts of the eigenvalue w along the branch 
(b,) for h = 1.6. The branch starts a t  the pitchfork bifurcation point A = h, where a 
pair of pure imaginary eigenvalues separate into two pairs along the imaginary w- 
axis. These two pairs of w coalesce in pairs again along the imaginary axis a t  A = A2 
and then split into two complex-conjugate pairs leaving the imaginary axis. This 
kind of bifurcation at h = A, is known as Hamiltonian-Hopf bifurcation. It 
corresponds to the Benjamin-Feir instability (Benjamin & Feir 1967) for two- 
dimensional steady progressive waves (Zufiria 1988). Continuing along the branch 
(b , ) ,  the two pairs of conjugate-complex eigenvalues coalesce on the real w-axis a t  
A = A,, and then split into another two pairs of real eigenvalues along the real w-axis. 
It should be mentioned that a t  the bifurcation point A = A,, where the three- 
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FIGURE 4 ( a , b ) .  For caption see p. 360 



Resonantly excited motions in a rectangular wave tank 359 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 
h 

0 
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 

h 

FIGURE 4 ( c , d ) .  For caption see p. 360. 
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dimensional wave becomes unstable, the amplitude of the transverse wave is not the 
maximum along the entire branch (bJ .  The amplitude of the cross-wave continues to 
increase until h = A, and then decreases to zero a t  h = A, where the family of three- 
dimensional waves ends. Branch (c,) is another family of stable three-dimensional 
waves which bifurcates from the two-dimensional longitudinal wave family (a1) in 
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FIGURE 5. Variations of the real and imaginary parts of the eigenvalue w along branch (b,) of figure 
4 ( b )  for h = 1.6. Pitchfork bifurcation occurs a t  A = A, and Hamiltonian-Hopf bifurcation occurs 
at h = A,. 

the reverse direction to branch (b3) .  Two inverse pitchfork bifurcations, branch (b,) 
bifurcating from (a l ) ,  and (c3)  from (a,) are all unstable wave families. 

Figures 4 ( c )  and 4 (d) are bifurcation diagrams for h = 1.7 and 1.9. Similar to the 
cases of h = 1.5 and 1.6, the stable three-dimensional family bifurcates from branch 
(a3) and ends a t  branch ( a l ) .  Hamiltonian-Hopf bifurcation occurs on the (b,) branch 
where the three-dimensional wave becomes unstable. Unlike the case of h = 1.5 and 
1.6, however, the branch (b,) which bifurcates from the (al)  longitudinal wave is 
stable for the present depths. All the families of the stationary solution ( 5 . 9 ~ )  are 
unstable. 

For the deep water case h = 4.0 (figure 4f),  both three-dimensional wave families 
(5.9b) and ( 5 . 9 ~ )  bifurcate from the (al)  branch of longitudinal waves. On the stable 
branch ( b l ) ,  both the longitudinal and transverse waves grow monotonically with 
increasing detuning parameter A. The transverse wave grows faster than the 
longitudinal wave near the bifurcation, and then reaches the same growth rate as h 
increases. The amplitude of the transverse wave finally increases to about 2.7 times 
that of the longitudinal wave. The other two solutions of (5.96), one stable and one 
unstable branch, which are separated by a turning point, make up the family ( b J .  On 
the stable branch, starting from the turning point, the amplitude of the longitudinal 
wave decreases while the amplitude of the transverse wave increases and dominates 
the three-dimensional wave motion. It is possible that some of the steady-state cross- 
waves observed by Lin & Howard are on this stable wave family which is more visible 
physically than the first stable branch ( b l ) .  

Bifurcation diagram figure 4 ( e )  is the transition between the cases of intermediate 
depths (figure 4 ( a 4 ) )  and deep water (figure 4f). The three branches of both the 
families (5.9b) and ( 5 . 9 ~ )  are indistinguishable in the figures. As in the case of h = 
4.0, branch (b , )  of family (5.9b) bifurcates from branch (al)  of the longitudinal wave. 
On the other hand, the three unstable branches ( c l ,  c2, c3)  of family ( 5 . 9 ~ )  bifurcate 
from branches (ul, a2, u3) respectively, similar to  the case of h = 1.8. 
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FIGURE 6. Comparisons of the frequency-response relationship for stationary transverse waves 
between the present analytic results and Lin & Howard's (1960) experimental measurements 
(circles) for (a) L = 6 in., W = 24.1875 in., H = 24 in., 20 = 0.279"; and (b) L = 12 in., W = 
24.1875 in., H = 20 in., 20 = 0.990'. The solid and broken lines are stable and unstable stationary 
solutions of (4.4). The chain line is the stable cross-wave stationary solution (5.10b). 
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Through a careful and difficult bifurcation analysis, it may, in principle, be 
possible to identify regions of the frequency parameter in figure 4 for which more 
complex motions are likely to occur. In the present case, at least one stable solution 
exists for any value of h and it is not immediately evident where chaotic solutions 
are most probable. From later Poinear6 section plots (figure 12 for h = 0.1 and figure 
13 for h = 0.2), chaotic motions appear to  be more widespread near h = 0.2 than 
h = 0.1, corresponding to the somewhat more complex stationary solution picture 
near the higher frequency in figure 4(b). A more quantitative prediction based on 
bifurcation analyses may not be possible. 

Figure 6 shows comparison between the theoretical results and Lin & Howard's 
experimental data for the transverse stationary wave amplitude for the cases of 
L = 6 in., W = 24.1875 in., H = 24 in., 1 = 0.248062 w a, 28 = 0.279' (figure 6a), and 
L = 12 in., W = 24.1875 in., H = 20 in., 1 = 0.496124 w $, 28 = 0.990' (figure 6b) 
respectively. For the 1 x a case, both longitudinal and transverse waves are first spatial 
harmonic modes, while for 2 x a, the oscillation of the first-mode transverse wave is 
associated with the second-mode longitudinal wave. The solid and broken lines 
represent respectively the stable and unstable analytic results which consider the 
parametric resonance only ($4). The chain line is for the amplitude of the stable 
transverse wave response for which the interaction between resonant longitudinal 
and transverse waves is included. Similar to figure 2, but somewhat less satisfactory, 
the figures again show overpredictions of the theoretical response amplitude for both 
comparisons. One explanation for the discrepancy is the difficulty of separating the 
longitudinal and transverse wave components from the wave-gauge measurements 
which was done graphically by Lin & Howard. The possible importance of dissipation 
again cannot be ruled out. 

5.3. Regular and chaotic behaviour 
To obtain some understanding of the nonlinear evolution, ( 5 4 ,  or equivalently (5 .8) ,  
are integrated numerically. A fourth-order Runge-Kutta scheme with a typical time 
step A7 = 0.005 is used for the numerical simulations. For all the numerical results, 
the value of the Hamiltonian is conserved to nine decimal places. Depending on the 
parameters selected, and the initial conditions, the simulated temporal trajectories 
may exhibit either regular (periodic and quasi-periodic) or chaotic behaviour. 

Figures 7 and 8 show the temporal evolution for the case of h = 1.6, h = 0.2, I = 
0.248062, B = 0.009072, but with initial conditions (C,, D,, C,, Db) = (0, 
-4.137322 1,0,6) and (0, -4.5269170,4,0) respectively. Both sets of initial 
conditions have the same Hamiltonian A? = 9.0. For the first set of initial conditions, 
the temporal evolution in figure 7 are regular (quasi-periodic). Since the two 
timescales T~ and 72 are combined into the shorter scale T ~ ,  the transverse wave 
modulates over a longer timescale than the longitudinal wave. The interactions 
between the two are relatively weak. When the initial conditions are changed (figure 
8), the resulting evolution becomes aperiodic and chaotic. The resonant interactions 
between the longitudinal and transverse waves are quite apparent. 

For the chaotic evolution, two solutions with slightly different initial conditions in 
general depart from each other at  an exponential rate, and the differences in the 
initial conditions are manifested at a later time by vastly different dynamical states. 
Such a characteristic of sensitivity to initial conditions can be quantified in terms of 
Lyapunov characteristic exponents which measure the mean rate of exponential 
separation of neighbouring evolution trajectories. For numerical calculations, we 
adopt a renormalization scheme suggested by Benettin, Galgani & Strelcyn (1976) to 
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FIQIJRE 7. Time evolution of (a) the longitudinal wave envelope, and (6) the transverse wave 
envelope for h = 1.6, A = 0.2, 1 = 0.248062, e = 0.009072 with the initial condition (G,,D,, G,,D,) 
= (0, -4.137221,0,6). 

compute the maximum Lyapunov exponent. Figure 9 shows the variation of the 
maximum Lyapunov exponent v for the parameter values and the different initial 
conditions of figures 7 and 8. For the regular evolution (figure 7) ,  it is seen that n 
(triangles) decreases and eventually vanishes in the limit of large 7. For the chaotic 
motion of figure 8, however, c (rectangles) approaches a positive finite value 
measuring the exponential divergence of neighbouring trajectories. 
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FIGURE 8. Time evolution of (a) the longitudinal wave envelope, and (b) the transverse wave 
envelope for h = 1.6, h = 0.2, 1 = 0.248062, 6 = 0.009072 with the initial condition (Ca, D,, C,, D,) 
= (0, -4.526917,4,0). 

Another characterization for regular and chaotic behaviour is the power spectrum 
of the evolution amplitude. From the numerical solution of the evolution over a time 
interval NAr, the power spectrum can be estimated using fast Fourier transform 

(5.14) 
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FIGURE 9. Variation of the maximum Lyapunov exponent u with 7 for the evolutions of 
figures 7 (triangles) and 8 (rectangles). 

where T~ = kAr is the discrete time, f,, = n/(NAr)  is the discrete frequency, and 
W(TJ = (3)4[1 -cos (27ck/N)] is the Hanning window function employed. The power 
spectra of the modulus llAll and I[BII for two sets of initial conditions of figures 7 and 
8 are shown in figures 10 and 11. For the regular evolution, the power spectrum 
(figure 10) consists of a finite series of discrete spikes which corresponds to 
multiharmonic motions in the quasi-periodic evolution. For the chaotic evolution 
(figure 11) the spectrum exhibits broadband features characteristics of such motions. 

To understand the global behaviour of the Hamiltonian system in phase space, we 
construct the two-dimensional first return map on the hypersurface Zs of 
codimension-one. Such a hypersurface is known as a Poincare' surface of section, 
which we choose for our problem to be defined by 

On the Poincare' section, a fixed point corresponds to a periodic trajectory, points 
lying on smooth curves (invariant curves) belong to a quasi-periodic orbit, while 
those belonging to a chaotic orbit will appear to fill a region. 

Figure 12 shows the Poincare' sections for the same geometric parameters as those 
for figures 7 and 8 but with h = 0.1 and for Hamiltonian values c%? = 2.0, 4.0 and 6.0 
respectively. For the lowest energy level X = 2.0, the phase portrait figure 12(a)  
appears completely regular: an elliptic fixed point a t  the origin surrounded by a 
nested sequence of invariant curves. As the energy level increases, for example figure 
12 ( b )  for 8 = 4.0, a chaotic region is seen between the inner and outer regular phase 
space. When the energy level is further raised, the outermost energy surface shrinks 
in the phase space and regular motions become predominant again as shown in figure 
12(c) for X = 6.0. We call this scenario the 'banded-energy ' phenomenon since 
chaotic motions appear to be limited to an interval (or band) of energy values. 

Completely different pictures emerge as one or more of the other physical 
parameters are altered. For illustration, we keep the same geometry and detuning 
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FIGURE 10. Power spectrum of the evolution amplitudes (a) IIAII and (b) llBll in figure 7 .  

value of h = 0.2 as figures 7 and 8, and consider the Poincar6 sections for energy 
levels corresponding to &? = 8.0, 9.0, 10.0 and 11.968215 respectively. The fourth 
value of &? is the Hamiltonian of the two-dimensional longitudinal stationary wave 
(branch a, in figure 4a) with a perturbation of 0.001(60,,,). The phase portraits in 
figure 13(a) for &? = 8.0 are completely regular. For somewhat higher energies, say 
&' = 9.0, we see that the elliptic fixed point a t  the origin loses its stability, becoming 
hyperbolic, and gives rise to two elliptic fixed points (figure 13b). Note that the 
simulations of figures 7 and 8 correspond to this case and the resulting regular and 
chaotic evolutions starting from the two different initial conditions are evident from 
figure 13(b). As the energy level is further increased, a large chaotic zone occupies 
most of the energy surface while the region of regular orbits shrinks as shown in figure 
13(c) for H = 10.0. When &? reaches close to its maximum value, for example for 
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FIQURE 11 .  Power spectrum of the evolution amplitudes (a) 11.1”11 and ( b )  IlBll in figure 8. 

X = 11.968215 in figure 13 (d ) ,  the elliptic fixed point at the origin reappears and the 
outermost energy surface forms a shell-like shape occupied mostly by chaotic orbits 
surrounded by a small layer of regular orbits. We refer to this as the ‘ critical-energy ’ 
phenomenon because there seems to be a critical energy level beyond which chaotic 
orbits dominate the phase space. 

As we have seen, the present nonlinear dynamical system possesses remarkably 
rich and varied solution features depending in subtle ways on the physical 
parameters, h, I ,  n, h and E ,  the total energy, X ,  as well as the specific initial phases 
of the motions. Given the large number of variables, a more global understanding of 
the problem,-for example a criterion for the onset of widespread chaos, would be most 
useful. 
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FIQURE 12. Poincark sections for h = 1.6, A = 0.1, 1 = 0.248062, E = 0.009072 on energy surfaces 
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6. Resonance overlap as a criterion for the onset of widespread chaos 
In  the preceding section we characterize the dynamical features (regular and 

chaotic) of the Hamiltonian system (5.8) by the Lyapunov characteristic exponent 
and power spectrum of the evolutions. Both of these only identify and quantify the 
local nature of the dynamical system. The global behaviour of the Hamiltonian 
system with two degrees of freedom almost always exhibits a divided phase space : for 
some regimes the evolutions are regular and for others chaotic, as shown for example 
in figures 12 and 13. To explore the global dynamic behaviour of the system directly 
in the large parameter space of h, 1, A ,  E ,  n and A? plus the relative phases is clearly 
difficult if not prohibitive. It would be valuable to obtain an estimate in terms of the 
physical parameters of the likelihood, say, of chaotic motions without resorting to 
detailed time-consuming numerical simulations in the entire phase and parameter 
space. 

One approximate but effective technique for giving estimates of the onset of chaos 
for a large class of Hamiltonian systems is the method of resonance overlap due to 
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FIGURE 13(a,b) .  For caption see facing page. 
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FIGURE 13. Poincark sections for h = 1.6, h = 0.2, I = 0.248062, 8 = 0.009072 on energy surfaces 
corresponding to  (a )  &' = 8.0; ( b )  9.0; (c) 10.0; (d )  11.968215. 
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Chirikov (1979). The basic supposition of the method is that the destruction of tori 
and the appearance of widespread chaos can be attributed to the overlapping of the 
primary nonlinear resonances. According to the Kolmogorov-Arnol'd-Moser (KAM) 
theorem (Arnol'd 1978), for an integrable system, those invariant curves with 
sufficiently incommensurate winding numbers persist under small perturbations. As 
the strength of the perturbation increases, neighbouring resonance zones will interact 
and chaotic motion is confined to a narrow regime around the separatrices bounding 
the resonance zones. As two resonance zones grow and eventually overlap, invariant 
curves between them will be destroyed, resulting in the onset of widespread chaos. 
The method of resonance overlap postulates that the last invariant curve between 
two lowest-order resonances is destroyed when the sum of the half-widths equals the 
distance between the resonance centres. A major approximation is that the width of 
each resonance zone can be calculated independently of all the others. This simple 
criterion results in a conservative estimate, i.e. a sufficient condition, for chaos 
because chaotic motion may result from interactions of the secondary resonances 
lying between the two primary resonances before the two primary resonance zones 
actually touch. Nevertheless the criterion yields a practical estimate for the critical 
parameters governing the transition to widespread chaos. 

Applying the canonical transformation : 

a = i(21a)texp (iOa), B = i(21,);exp (iOb), 

where I,, b and da, b are action and angle variables, the Hamiltonian (5.7) takes the 
new form: 

% = %O+%a+%b, (6.1~) 

(6.lb) 

(6.1c, d )  

The new form of the Hamiltonian consists of an integrable part Po and two non- 
integrable perturbations and %b responsible for the two primary resonances 
caused by the forced and parametric resonances respectively. The strategy is to 
calculate the resonance conditions and the widths of the resonance zones of = 

and gB = X0+Xb independently, and find the perturbation strength at 
which these two primary resonances touch. That the calculation can be done for each 
resonance in isolation is clearly a major approximation in the method of resonance 
overlap. 

For a general Hamiltonian %(I, O) ,  where I and O are the vectors of action and 
angle variables, a resonance arises at those values of I = I' where the frequencies are 
commensurate. That is, there exists a vector k with irreducible integer components 
such that 

where k is called the resonance vector. In general, for a Hamiltonian system of N 
degrees of freedom, each resonance vector defines an (N-  1 )-dimensional resonance 
surface in the N-dimensional action variables space. For the Hamiltonian %*, the 
resonance vector k = ( 1, 0) ,  which gives the resonance condition 

2 ~ ~ + 2 2 ~ - y ,  = 0. (6.3) 
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Similarly for the Hamiltonian ZE with resonance vector k = (0,2), the resonance 
condition is 

2&+21;,P,-y, = 0. (6.4) 

The next step is to transform the Hamiltonians XA and HE into canonical 
pendulum Hamiltonians. We proceed by introducing the generating function 

F ( J , 8 )  = (I'T+J*p)*8T, (6.5) 

where J is the new vector of action variables and y is a constant matrix. The new 
angle variables are then given by 

yT = y e p ,  (6.6) 

where the kth element is the resonant phase $k = k . F ,  and is slow relative to the 
other phases. Following Tabor (1981), we choose the constant matrix y in such a 
way that $, = 0, for j =+ k. The new angle variables $ j  = 6,,j =+ k therefore are 
linearly independent and are fast relative to the resonant phase $k. For the 
Hamiltonian ZA, the transformations between the original and new action and angle 
variables are 

IT = k} = p+ J .  y, p = { z;} = y-l. W ~ .  (6.7a, b)  

Transforming the Hamiltonian ZA to the new action and angle variables, averaging 
the Hamiltonian over the fast variables $j,j =k k, and expanding Z o ( I a ,  Ib)  about the 
resonant actions Z = I' = (pa,&) yields 

s" 
2PA x Z 0 ( ~ , ~ ) - - ( 2 p a ) ~ c o s ~ a  

P 

Dropping the constant term Z0(& 4) and applying the resonance condition 
aZ0/aIa = 0, SA becomes 

The next approximation of the method of resonance overlap is to assume that the net 
contribution from the last three terms is small, and we finally obtain the pendulum 
form of the resonant Hamiltonian as 

The resonance half-width is then given by 

AJ = - (Wa)i. (3" 

(6.10) 

(6.11) 

From this we can obtain the vector of resonance widths in the original action 
variables as 

(6.12) 
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FIGURE 14(a,b). For caption see facing page. 
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FIGURE 14. Resonance overlap diagrams for h = 1.6, 1 = 0.248062, E = 0.009072 with (a) A = 0.1 ; 
(b) 0.15; (c) 0.2; (d) 0.3. The chain lines (aa) and (b,) are resonance conditions for ZA and ZB, and 
the thick solid lines (a,) and (b,) denote resonance boundaries of HA and ZB respectively. The 
shaded area is the overlap region of the two resonances. The dotted lines are level curves of 
constant Zo. 
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Similarly, for the Hamiltonian SB, the corresponding canonical pendulum resonant 
Hamiltonian is - * 

2; = -- '4 J ; - -&;~~~$~ ,  (6.13) 
P P 

- - 

and the resonance half-width is 

which gives the width of resonance in the original action variable as 

(6.14) 

(6.15) 

The above analysis can be applied graphically to determine the value of the 
Hamiltonian at  which resonance overlap occurs and hence provide an estimate for 
the onset of widespread chaos. In figure 14 we plot in the space of the original action 
variables ( Ia , Ib )  the resonance conditions (6.3) and (6.4) (curves a, and b l ) ,  the 
boundaries of resonance zone (6.12) and (6.15) (curves a2 and b2) ,  and the curves of 
constant So for the cases of h = 1.6, 1 = 0.248062, 6 = 0.009072 and h = 0.1, 0.15, 
0.2,0.3. Superposing the two resonance zones, we obtain the overlap region as shown 
by the shaded areas in the figures. The global behaviour of the Poincare' sections in 
figures 12 and 13 can be completely explained in terms of these resonance overlap 
diagrams. 

From figure 14 (a)  for h = 0.1, we see that the level curve of So x 2 = 2.0 does not 
intersect the resonance overlap zone. This suggests that isolated resonance zones 
dominate a t  this low energy and we should see only regular motions, as figure 12 ( a )  
shows. As So is increased, part of the level curves sweep across the interior of the 
resonance overlap regime, indicating the onset of chaotic motion. Figure 12 ( b )  shows 
the Poincare' section of such an energy level, .X = 4.0, where a chaotic region is seen 
between the inner and outer regular phase portraits. As the energy level is further 
raised, the level curves no longer intersect the overlap region and regular motions 
become predominant again in the phase space as shown in figure 12(c) for 2 = 6.0. 
This explains the so called banded-energy phenomenon. 

The critical-energy phenomenon for h = 0.2 with the energy levels of So x S = 
8.0,9.0, 10.0 and 11.968215 as presented in figure 13 can also be predicted according 
to the resonance overlap diagram figure 14(c). That the phase portraits in figure 
13(a) are completely regular can be seen from figure 14(c) where the level curve of 
Z0 x & = 8.0 is away from the overlap zone. As the energy level is raised beyond 
a critical value the level curves never leave the overlap region once they are inside. 
This corresponds to the critical-energy phenomenon we have seen in the numerical 
experiments. The phase space will be dominated by chaotic trajectories as indicated 
in figure 13(b-d) for energy levels greater than the critical value. 

Since the physical parameters are related in a very complicated way to the 
coefficients in the Hamiltonian system, the resonance overlap diagrams suggest an 
effective way to search the space of the parameters. One important piece of 
information from the resonance overlap diagram is the area of the overlap zone which 
gives a measure of the degree or likelihood of chaotic motions for the specific set of 
physical parameters. Thus we simply plot the areas of the overlap zones as a function 
of the changing parameters. As an illustration, we show the variation of the overlap 
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FIGURE 15. 
A 

and different values of h = 1.6, 1.8 and 2.2. 
Resonance overlap area versus detuning parameter A for 2 = 0.248062, € =  0.009072 

FIGURE 16. 

E 

Resonance overlap area versus excitation amplitude E for 2 = 0.248062, h = 1.6 
different values of h = 0.1, 0.15, 0.2 and 0.3. 

and 

area with the excitation-frequency detuning parameter h for 1 = 0.248062, E = 
0.009072 and three different depths h = 1.6, 1.8 and 2.2 in figure 15. For h = 2.2, the 
overlap area increases monotonically with increasing detuning A. For the inter- 
mediate depths, h = 1.6 and 1.8, however, the overlap areas increase to a 
maximum and then fall off as h is further increased. The effect of the excitation 
amplitude B on the degree of chaos can likewise be examined. Figure 16 shows the 
change of overlap area with E for the cases 1 = 0.248062, h = 1.6 and h = 0.1, 0.15, 
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0.2 and 0.3. Surprisingly, the overlap area first increases rapidly for increasing 
excitation amplitude and then decreases for larger amplitudes so that the most 
widespread chaotic responses need not be associated with the largest driving 
amplitudes. 

To keep the presentation to a reasonable length, we have not considered the 
extension to weakly dissipative systems. Such an investigation is now in progress. 

This research was supported financially by the National Science Foundation and 
the Office of Naval Research. Some of the computations were performed on the NSF 
sponsored Pittsburg Supercomputer Center Cray X/MP. We thank Professor Jack 
Wisdom for useful discussions. 

Appendix. Second-order solution for the internal interaction system 

internal interaction case are 

Q, = i(e-i2t - c.c. 

The solutions Q2 and g2 for the second-order boundary-value problem of the 

1 m 

dm cos mnz cosh mn(z + h)  -rp(z, z )  [ m-0 
m + n  

2 

1 1 cosh2nn(z+h) 
2nn sinh 2nnh 

+ i[A 2 e-i(4+2yeZ) t - 

1 cosh 2 h ( z  + h) 
2Zn sinh 2Znh 

+ i[B2 e-i2t - c.c.] 

1 cosh [(n2 + Z 2 ) h ( z  + h)]  
(n2 + Z2)h sinh [ (n2 + Z2)hh] 

+ (AA *) a, t + (BB*) b, t ,  

1 m 2 

P 
and c2 = -- (e-i2t + c.c.) d, cos mnx cosh mnh-rp(z, 0) 

m + n  

(nz + 2Z2) n2p2 - 42 (2Z2 - n2) x2p2 + 6 
Sh- 8p a2 = > b, = 7 2 j  - 8p , 
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2 2  

a, * = - ' (3n2n2p2-16), 6, = &pl/Z2x2(1 -3piZ2x2), 
1024 

~ 3(n2+2Z2)rc2p,Z-l4 - 1 
a3 = , b, = -(1+p;z2rc2), 

8,Z - 8 , ~  8Pl/ 
8 4 + mrcfi,, tanh mrch - tanh 

3 -m m2n2(mnp, sinh mrch- 4 cosh mxh) ' 

379 

- 1 ' = (n2+12)h tanh(n2+Z2)arch* 
and 
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